Irradiation-induced stiffening of carbon nanotube bundles
نویسندگان
چکیده
Recent experiments have demonstrated that electron irradiation of bundles of single-walled carbon nanotubes resulted in dramatic increase of the bundle bending modulus at moderate irradiation doses, followed by a decrease in mechanical properties at higher doses. To understand such a behavior, we employ molecular dynamics simulations with empirical potentials and analytical approximations to calculate defect production rates and mechanical properties of the irradiated nanotubes. We show that the observed peak in the bending modulus originates from a trade-off between irradiation-induced bundle stiffening via inter-tube covalent bonds and a drop in the Young s modulus of individual nanotubes due to vacancies. 2004 Elsevier B.V. All rights reserved. PACS: 81.07.De; 61.80.Jh; 62.25.+g
منابع مشابه
Effective Mechanical Properties of Nanocomposites Reinforced With Carbon Nanotubes Bundle
Nanocomposites made of Carbon Nanotube (CNT) bundles have attracted researchers’ attention due to their unusual properties such as: light weight, flexibility and stiffness. In this paper, the effects of straight and rope-shaped bundles on nanocomposite effective mechanical properties are investigated. First, FEA models are created consisting of CNTs with different shapes of straight and rope-...
متن کاملQuantum dot decorated aligned carbon nanotube bundles for a performance enhanced photoswitch.
Photoactive materials that are triggered by the irradiation of light to generate an electrical response provide an ecofriendly platform to afford efficient power sources and switches. A chemical assembly of well-known elements with aligned carbon nanotube bundles is reported here, which was employed to form an efficient photo-induced charge transfer device. The primary elements of this device a...
متن کاملUltrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles.
IO N Utilizing the full mechanical capabilities of individual carbon nanotubes (CNT) – which can exhibit tensile strength and elastic modulus of up to 1TPa and 100 GPa, respectively [ 1–4 ] – has motivated a great deal of interest in CNT based nanocomposite materials. [ 5–10 ] Despite this signifi cant scientifi c effort, the strength, modulus, and toughness of CNT based fi bers and composites ...
متن کاملMolecular Dynamics Simulations of Strained and Defective Carbon Nanotubes
Carbon nanotubes are tubular molecules of pure carbon with typical diameters of 1 nm – 100 nm and lengths from 100 nm up to several cm. The nanotubes have outstanding electronical and mechanical properties which has resulted in remarkable scientific interest and in proporsals of various applications. For example, their ability to be either metals or semiconductors enables the usage of nanotubes...
متن کاملAnisotropic Decay Dynamics of Photoexcited Aligned Carbon Nanotube Bundles
We have performed polarization-dependent ultrafast pump-probe spectroscopy of a film of aligned single-walled carbon nanotube bundles. By taking into account imperfect nanotube alignment as well as anisotropic absorption cross sections, we quantitatively determined distinctly different photobleaching dynamics for polarizations parallel and perpendicular to the tube axis. For perpendicular polar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004